7 research outputs found

    On-demand network slicing using SDN/NFV-enabled satellite ground segment systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes an architecture framework for the realization of on-demand satellite network slicing that is built on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. In this way, service delivery with satellite networks is shifted from a network for connectivity model to a network for service model with a high degree of service customization and adaptability, including satellite bandwidth on-demand. Under this framework, we study the resource orchestration of satellite network services by formulating the on-demand network slicing as an optimization problem that provides flexible service chaining and provisioning taking into account diversified service requirements. The objective is to determine the optimal resource allocation for supporting a satellite network slice that minimizes resources consumption while meeting service specification requirements such as the end-to-end delay.Peer ReviewedPostprint (author's final draft

    Placement et Chaînage des Fonctions de Service dans les Environnements de Virtualisation Réseau

    No full text
    L'émergence de la technologie de virtualisation des fonctions réseau (NFV) a suscité un vif intérêt autour de la conception, la gestion et le déploiement de services réseau de manière flexible, automatisée et indépendante du fournisseur. La mise en œuvre de la technologie NFV devrait être une solution profitable pour les fournisseurs de services et les clients. Cependant, ce changement de paradigme, amorcé par NFV, nécessite un abandon progressif des services réseau fournis à travers des équipements dédiés. En contrepartie, un environnement totalement ou partiellement virtualisé est proposé pour instancier dynamiquement et à la demande des modules logiciels appelés fonctions de réseau virtuelles (VNF). Cette évolution soulève un ensemble de défis liés au déploiement et à l'exploitation de services, tels que l'orchestration et la gestion, la résilience des services, le contrôle de la qualité de service (QoS), l’approvisionnement des ressources, etc. En outre, la question centrale à résoudre dans le contexte NFV est la suivante : « comment placer et chaîner effacement des fonctions virtuelles d’un service afin de fournir un niveau de qualité demandé par le client tout en optimisant l'utilisation des ressources par le fournisseur de services ? ”.Ainsi, cette thèse étudie la problématique du placement et du chaînage des VNF en tenant compte de certaines exigences de service telles que le délai de bout en bout, la disponibilité du service et la consommation d'énergie, et propose un ensemble d'algorithmes et de mécanismes visant à optimiser le déploiement des services demandés/fournis. Nos contributions dans cette thèse sont triples. Premièrement, nous proposons deux algorithmes de placement et de chaînage de VNF sensibles au délai de bout-en-bout pour des applications temps-réel. Les algorithmes proposés visent à respecter le délai approprié de bout-en-bout qui dépend du service déployé (exemples : VoIP, Streaming, etc.). Deuxièmement, nous présentons une analyse comparative de la disponibilité des services et nous proposons deux mécanismes de placement et de chaînage de VNF pour garantir un niveau prédéfini de disponibilité. L’objectif est de fournir des services résilients en ajustant avec précision les paramètres du schéma de protection (nombre, type, emplacement et taille des instances VNF) nécessaires pour atteindre ce niveau de disponibilité en dépit des défaillances du réseau. Enfin, nous proposons une architecture générale qui explore la possibilité d’étendre le paradigme de la virtualisation à l’Internet des objets (IoT). À cette fin, nous définissons un mécanisme de placement et de chaînage respectant les contraintes énergétiques pour des services IoT. Notre architecture propose de découpler et de virtualiser les fonctionnalités inhérentes à un objet connecté de l’équipement IoT physique. En étendant NFV au domaine IoT, notre solution ouvre de nouvelles perspectives d’application en supportant de nouveaux cas d’usages.The emergence of Network Function Virtualization (NFV) technology has aroused keen interest to design, manage and deploy network services in a flexible, automated and vendor-agnostic manner. Implementing NFV technology is expected to be a win-win solution for both service providers and costumers. However, this paradigm shift, sparked by NFV, calls for a progressive abandon of network services that are provided as hardware appliance and rather it proposes a fully or partially virtualized environment that offers software modules called Virtual Network Functions (VNFs). This shift rises a set of challenges related to service deployment and operation such as orchestration and management, service resiliency, Quality of Service (QoS) and resource provisioning among others. Furthermore, the core question that needs to be solved within NFV context is “What is the best way to place and chain VNFs that form a service in order to meet Service Level Agreement requirements (costumer side) while optimizing resource usage (service provider side)?”.This thesis investigates the problem of VNF Placement and Chaining considering service requirements such as end-to-end delay, service availability and energy consumption and proposes a set of algorithms and mechanisms that aim to achieve an optimized deployment of the requested/provided services. Our contributions in this thesis are threefold. First, we propose a delay-aware Placement and Chaining algorithms for delay-sensitive applications over NFV networks. The proposed algorithms aim to meet the appropriate end-to-end delay defined according to the deployed service (VoIP, Streaming, etc.). Second, we provide a comprehensive service availability benchmarking and we propose two availability-aware mechanisms for VNFs chain. The aim is to provide resilient service provisioning by fine-tuning the parameters of the protection scheme (the number, the type, the placement and the size of the spare instances) needed to reach a predefined availability level, despite network failures. Finally, we propose a framework architecture that explores the possibility to extend the virtualization paradigm to Internet of Things (IoT). Toward this end, we define an energy-aware Placement and Chaining for IoT services where inherent IoT functionalities are decoupled from specific dedicated IoT devices and instantiated on-demand. By bringing together NFV and IoT paradigms, this extension opens new perspectives and push toward designing new use cases

    Service Function Placement and Chaining in Network Function Virtualization Environments

    No full text
    L'émergence de la technologie de virtualisation des fonctions réseau (NFV) a suscité un vif intérêt autour de la conception, la gestion et le déploiement de services réseau de manière flexible, automatisée et indépendante du fournisseur. La mise en œuvre de la technologie NFV devrait être une solution profitable pour les fournisseurs de services et les clients. Cependant, ce changement de paradigme, amorcé par NFV, nécessite un abandon progressif des services réseau fournis à travers des équipements dédiés. En contrepartie, un environnement totalement ou partiellement virtualisé est proposé pour instancier dynamiquement et à la demande des modules logiciels appelés fonctions de réseau virtuelles (VNF). Cette évolution soulève un ensemble de défis liés au déploiement et à l'exploitation de services, tels que l'orchestration et la gestion, la résilience des services, le contrôle de la qualité de service (QoS), l’approvisionnement des ressources, etc. En outre, la question centrale à résoudre dans le contexte NFV est la suivante : « comment placer et chaîner effacement des fonctions virtuelles d’un service afin de fournir un niveau de qualité demandé par le client tout en optimisant l'utilisation des ressources par le fournisseur de services ? ”.Ainsi, cette thèse étudie la problématique du placement et du chaînage des VNF en tenant compte de certaines exigences de service telles que le délai de bout en bout, la disponibilité du service et la consommation d'énergie, et propose un ensemble d'algorithmes et de mécanismes visant à optimiser le déploiement des services demandés/fournis. Nos contributions dans cette thèse sont triples. Premièrement, nous proposons deux algorithmes de placement et de chaînage de VNF sensibles au délai de bout-en-bout pour des applications temps-réel. Les algorithmes proposés visent à respecter le délai approprié de bout-en-bout qui dépend du service déployé (exemples : VoIP, Streaming, etc.). Deuxièmement, nous présentons une analyse comparative de la disponibilité des services et nous proposons deux mécanismes de placement et de chaînage de VNF pour garantir un niveau prédéfini de disponibilité. L’objectif est de fournir des services résilients en ajustant avec précision les paramètres du schéma de protection (nombre, type, emplacement et taille des instances VNF) nécessaires pour atteindre ce niveau de disponibilité en dépit des défaillances du réseau. Enfin, nous proposons une architecture générale qui explore la possibilité d’étendre le paradigme de la virtualisation à l’Internet des objets (IoT). À cette fin, nous définissons un mécanisme de placement et de chaînage respectant les contraintes énergétiques pour des services IoT. Notre architecture propose de découpler et de virtualiser les fonctionnalités inhérentes à un objet connecté de l’équipement IoT physique. En étendant NFV au domaine IoT, notre solution ouvre de nouvelles perspectives d’application en supportant de nouveaux cas d’usages.The emergence of Network Function Virtualization (NFV) technology has aroused keen interest to design, manage and deploy network services in a flexible, automated and vendor-agnostic manner. Implementing NFV technology is expected to be a win-win solution for both service providers and costumers. However, this paradigm shift, sparked by NFV, calls for a progressive abandon of network services that are provided as hardware appliance and rather it proposes a fully or partially virtualized environment that offers software modules called Virtual Network Functions (VNFs). This shift rises a set of challenges related to service deployment and operation such as orchestration and management, service resiliency, Quality of Service (QoS) and resource provisioning among others. Furthermore, the core question that needs to be solved within NFV context is “What is the best way to place and chain VNFs that form a service in order to meet Service Level Agreement requirements (costumer side) while optimizing resource usage (service provider side)?”.This thesis investigates the problem of VNF Placement and Chaining considering service requirements such as end-to-end delay, service availability and energy consumption and proposes a set of algorithms and mechanisms that aim to achieve an optimized deployment of the requested/provided services. Our contributions in this thesis are threefold. First, we propose a delay-aware Placement and Chaining algorithms for delay-sensitive applications over NFV networks. The proposed algorithms aim to meet the appropriate end-to-end delay defined according to the deployed service (VoIP, Streaming, etc.). Second, we provide a comprehensive service availability benchmarking and we propose two availability-aware mechanisms for VNFs chain. The aim is to provide resilient service provisioning by fine-tuning the parameters of the protection scheme (the number, the type, the placement and the size of the spare instances) needed to reach a predefined availability level, despite network failures. Finally, we propose a framework architecture that explores the possibility to extend the virtualization paradigm to Internet of Things (IoT). Toward this end, we define an energy-aware Placement and Chaining for IoT services where inherent IoT functionalities are decoupled from specific dedicated IoT devices and instantiated on-demand. By bringing together NFV and IoT paradigms, this extension opens new perspectives and push toward designing new use cases

    An Architecture Framework for Virtualization of IoT Network

    No full text
    International audienceThe Internet of Things (IoT) market is constantly opening new business and market opportunities to connect the digital and physical worlds in many sectors such as smart-city, industry, agriculture, building, transportation, energy, etc. To support this major growth, we anticipate the adoption of mainstream Software Defined Networking SDN, Software Defined Radio (SDR) and Network Function Virtualization (NFV) technologies within the IoT systems to allow providing new ways of offering services in a more flexible, agile and cost-effective manner than today. This paper investigates the provision of NFV in the Internet of Things through the virtualization of full stack IoT functions, from radio processing functions to processing capabilities, that can be orchestrated dynamically and deployed on generic IoT devices. We provide a proof of concept to demonstrate the provisioning of end-to-end virtualized service function chain using the GNU Radio framework and dockers containers for isolation and VNF deployment and executio

    On-Demand Network Slicing using SDN/NFVenabled Satellite Ground Segment Systems

    No full text
    none4This paper proposes an architecture framework for the realization of on-demand satellite network slicing that is built on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. In this way, service delivery with satellite networks is shifted from a network for connectivity model to a network for service model with a high degree of service customization and adaptability, including satellite bandwidth on-demand. Under this framework, we study the resource orchestration of satellite network services by formulating the on-demand network slicing as an optimization problem that provides flexible service chaining and provisioning taking into account diversified service requirements. The objective is to determine the optimal resource allocation for supporting a satellite network slice that minimizes resources consumption while meeting service specification requirements such as the end-to-end delay.noneToufik Ahmed; Abdelhamid Alleg; Ramon Ferrus; Roberto RiggioAhmed, Toufik; Alleg, Abdelhamid; Ferrus, Ramon; Riggio, Robert

    Delay-aware VNF Placement and Chaining based on a Flexible Resource Allocation Approach

    No full text
    Network Function Virtualization (NFV) is a promising technology that is receiving significant attention in both academia and the industry. NFV paradigm proposes to decouple Network Functions (NFs) from dedicated hardware equipment, offering a better sharing of physical resources and providing more flexibility to network operators. However, in such environment, efficient management mechanisms are crucial to address the problem of Placement and Chaining of Virtual Network Functions (PC-VNF). In this paper, we introduce a PC-VNF model based on a flexible resource allocation approach that takes into account service requirements in terms of latency, in addition to traditional connectivity and resource utilization. This is particularly important for emerging 5G services such as ultrareliable, low latency and massive machine type communications. The end-to-end performance needs to meet the user expectations as well as service requirements to provide the desired QoS/QoE. Our main goal is to determine the optimal VNF placement minimizing resource consumption while providing specific latency (i.e., end-to-end delay) and avoiding violation of Service Level Agreements (SLA) by constraining allocated resources to a given VNF to reach its required performance. Results show that our approach achieves the required latency with better resources utilization compared to the classical approaches, with a reduction of up to 40% of resource consumption and a higher rate of accepted requests by recovering 15 to 60 % of the rejected requests

    On-demand network slicing using SDN/NFV-enabled satellite ground segment systems

    No full text
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes an architecture framework for the realization of on-demand satellite network slicing that is built on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. In this way, service delivery with satellite networks is shifted from a network for connectivity model to a network for service model with a high degree of service customization and adaptability, including satellite bandwidth on-demand. Under this framework, we study the resource orchestration of satellite network services by formulating the on-demand network slicing as an optimization problem that provides flexible service chaining and provisioning taking into account diversified service requirements. The objective is to determine the optimal resource allocation for supporting a satellite network slice that minimizes resources consumption while meeting service specification requirements such as the end-to-end delay.Peer Reviewe
    corecore